Representing Sums of Finite Products of Chebyshev Polynomials of Third and Fourth Kinds by Chebyshev Polynomials
نویسندگان
چکیده
منابع مشابه
On a conjecture for weighted interpolation using Chebyshev polynomials of the third and fourth kinds
A conjecture for the projection norm (or Lebesgue constant) of a weighted interpolation method based on the zeros of Chebyshev polynomials of the third and fourth kinds is resolved. This conjecture was made in a paper by J. C. Mason and G. H. Elliott in 1995. The proof of the conjecture is achieved by relating the projection norm to that of a weighted interpolation method based on zeros of Cheb...
متن کاملCurves Defined by Chebyshev Polynomials
Working over a field k of characteristic zero, this paper studies line embeddings of the form φ = (Ti, Tj , Tk) : A → A, where Tn denotes the degree n Chebyshev polynomial of the first kind. In Section 4, it is shown that (1) φ is an embedding if and only if the pairwise greatest common divisor of i, j, k is 1, and (2) for a fixed pair i, j of relatively prime positive integers, the embeddings ...
متن کاملCHARACTERISTIC FUNCTIONS AND s-ORTHOGONALITY PROPERTIES OF CHEBYSHEV POLYNOMIALS OF THIRD AND FOURTH KIND
The properties of two families of s-orthogonal polynomials, which are connected with Chebyshev polynomials of third and fourth kind, are studied. Evaluations of the remainders are given and asymptotic formulae are calculated for the corresponding hyper-Gaussian formulae used for an approximate estimation of integrals. 2000 Mathematics Subject Classification: 33C45, 65D32.
متن کاملOn Chebyshev Polynomials of Matrices
The mth Chebyshev polynomial of a square matrix A is the monic polynomial that minimizes the matrix 2-norm of p(A) over all monic polynomials p(z) of degree m. This polynomial is uniquely defined if m is less than the degree of the minimal polynomial of A. We study general properties of Chebyshev polynomials of matrices, which in some cases turn out to be generalizations of well known propertie...
متن کاملSymmetrized Chebyshev Polynomials
We define a class of multivariate Laurent polynomials closely related to Chebyshev polynomials and prove the simple but somewhat surprising (in view of the fact that the signs of the coefficients of the Chebyshev polynomials themselves alternate) result that their coefficients are non-negative. As a corollary we find that Tn(c cos θ) and Un(c cos θ) are positive definite functions. We further s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2018
ISSN: 2073-8994
DOI: 10.3390/sym10070258